Improvement of the thermostability and catalytic efficiency of a highly active β-glucanase from Talaromyces leycettanus JCM12802 by optimizing residual charge–charge interactions

نویسندگان

  • Shuai You
  • Tao Tu
  • Lujia Zhang
  • Yuan Wang
  • Huoqing Huang
  • Rui Ma
  • Pengjun Shi
  • Yingguo Bai
  • Xiaoyun Su
  • Zhemin Lin
  • Huiying Luo
  • Bin Yao
چکیده

BACKGROUND β-Glucanase is one of the most extensively used biocatalysts in biofuel, food and animal feed industries. However, the poor thermostability and low catalytic efficiency of most reported β-glucanases limit their applications. Currently, two strategies are used to overcome these bottlenecks, i.e., mining for novel enzymes from extremophiles and engineering existing enzymes. RESULTS A novel endo-β-1,3-1,4-glucanase of GH16 (Tlglu16A) from the thermophilic fungus Talaromyces leycettanus JCM12802 was produced in Pichia pastoris and characterized. For potential industrial applications, recombinant TlGlu16A exhibits favorable enzymatic properties over most reported glucanases, i.e., remarkable stability over a wide pH range from 1.0 to 10.0 and superior activity on glucan substrates (up to 15,197 U/mg). The only weakness of TlGlu16A is the thermolability at 65 °C and higher. To improve the thermostability, the enzyme thermal stability system was then used to engineer TlGlu16A through optimization of residual charge-charge interactions. Eleven mutants were constructed and compared to the wild-type TlGlu16A. Four mutants, H58D, E134R, D235G and D296K, showed longer half-life time at 80 °C (31, 7, 25, 22 vs. 0.5 min), and two mutants, D235G and D296K, had greater specific activities (158.2 and 122.2 %, respectively) and catalytic efficiencies (k cat/K m, 170 and 114 %, respectively). CONCLUSIONS The engineered TlGlu16A has great application potentials from the perspectives of enzyme yield and properties. Its thermostability and activity were apparently improved in the engineered enzymes through charge optimization. This study spans the genetic, functional and structural fields, and provides a combination of gene mining and protein engineering approaches for the systematic improvement of enzyme performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering a highly active thermophilic β-glucosidase to enhance its pH stability and saccharification performance

BACKGROUND β-Glucosidase is an important member of the biomass-degrading enzyme system, and plays vital roles in enzymatic saccharification for biofuels production. Candidates with high activity and great stability over high temperature and varied pHs are always preferred in industrial practice. To achieve cost-effective biomass conversion, exploring natural enzymes, developing high level expre...

متن کامل

Rational Design of Disulfide Bonds Increases Thermostability of a Mesophilic 1,3-1,4-β-Glucanase from Bacillus terquilensis

1,3-1,4-β-glucanase is an important biocatalyst in brewing industry and animal feed industry, while its low thermostability often reduces its application performance. In this study, the thermostability of a mesophilic β-glucanase from Bacillus terquilensis was enhanced by rational design and engineering of disulfide bonds in the protein structure. Protein spatial configuration was analyzed to p...

متن کامل

Improvement of the catalytic efficiency of a hyperthermophilic xylanase from Bispora sp. MEY-1

Extremophilic xylanases have attracted great scientific and industrial interest. In this study, a GH10 xylanase-encoding gene, Xyl10E, was cloned from Bispora sp. MEY-1 and expressed in Pichia pastoris GS115. Deduced Xyl10E shares the highest identities of 62% and 57% with characterized family GH10 xylanases from Talaromyces leycettanus and Penicillium canescens (structure 4F8X), respectively. ...

متن کامل

Structural insights into the effects of charge-reversal substitutions at the surface of horseradish peroxidase

Horseradish peroxidase (HRP), has gained significant interests in biotechnology, especially in biosensor field and diagnostic test kits. Hence, its solvent-exposed lysine residues 174, 232, and 241 have been frequently modified with the aim of improving its stability and catalytic efficiency. In this computational study, we investigated the effects of Lys-to-Glu substitutions on HRP structure t...

متن کامل

Recombinant production and characterization of full-length and truncated β-1,3-glucanase PglA from Paenibacillus sp. S09

BACKGROUND β-1,3-Glucanases catalyze the hydrolysis of glucan polymers containing β-1,3-linkages. These enzymes are of great biotechnological, agricultural and industrial interest. The applications of β-1,3-glucanases is well established in fungal disease biocontrol, yeast extract production and wine extract clarification. Thus, the identification and characterization of novel β-1,3-glucanases ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016